The Quantum-Inspired Evolutionary Algorithm in the Parametric Optimization of Lithium-Ion Battery Housing in the Multiple-Drop Test

Author:

Rurański Adam1ORCID,Kuś Wacław1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland

Abstract

Recent developments in lithium-ion batteries have improved their capacity, which allows them to be used in more applications like power tools. However, they also carry higher risks, such as thermal runaway, which can happen if they are damaged. To make these batteries safer, it is important to improve the design of their housings subjected to multiple drops during their use. This article introduces a new method for optimizing the design of lithium-ion battery housings using a Quantum-Inspired Evolutionary Algorithm (QEA). Previously used mainly in theoretical settings, the authors have adapted QEA for practical engineering tasks. Multiple-drop test simulations were performed, and QEA was used to identify the best housing designs that minimize damage. To support this, a program was developed that automates all drop tests and rebuilds the model. The damage is obtained on the basis of the finite element method (FEM) analyses. The findings show that the algorithm successfully identified designs with the least damage during these tests. This research helps make battery housings safer and explores new uses for QEA in mechanical engineering.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3