The Influence of Testing Conditions on State of Health Estimations of Electric Vehicle Lithium-Ion Batteries Using an Incremental Capacity Analysis

Author:

Gismero Alejandro1ORCID,Dubarry Matthieu2ORCID,Guo Jia1ORCID,Stroe Daniel-Ioan1ORCID,Schaltz Erik1ORCID

Affiliation:

1. Department of Energy, Aalborg University, Pontoppidanstraede 111, 9220 Aalborg, Denmark

2. Hawaii Natural Energy Institute, University of Hawaii at Manoa, 1680 East–West Road, POST 109, Honolulu, HI 96822, USA

Abstract

The increasing growth of the second-hand electric vehicle market demands reliable methods for evaluating the state of health of deployed electric vehicle batteries. Among these methods, incremental capacity analysis is a commonly used technique for state of health evaluation via the quantification of degradation modes. While the optimal conditions for its application typically involve low currents and a controlled temperature, this cannot be easily applied to deployed batteries. It is therefore essential to understand the impact of varying charging rates and temperatures on the accuracy of the analysis. In this study, the characteristics and behavior of incremental capacity features for seven electric vehicle batteries tested under different calendar aging conditions were investigated. The results show that accurate state of health estimations under different test conditions could be obtained using specific electrochemical features.

Funder

Workshop Automated BAttery Tester

EUDP Denmark

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3