A Novel Solver for an Electrochemical–Thermal Ageing Model of a Lithium-Ion Battery

Author:

Wickramanayake Toshan1ORCID,Javadipour Mehrnaz1ORCID,Mehran Kamyar1ORCID

Affiliation:

1. Real Time Power and Control Systems Laboratory, School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK

Abstract

To estimate the state of health, charge, power, and safety (SoX) of lithium-ion batteries (LiBs) in real time, battery management systems (BMSs) need accurate and efficient battery models. The full-order partial two-dimensional (P2D) model is a common physics-based cell-level LiB model that faces challenges for real-time BMS implementation due to the complexity of its numerical solver. In this paper, we propose a method to discretise the P2D model equations using the Finite Volume and Verlet Integration Methods to significantly reduce the computational complexity of the solver. Our proposed iterative solver uses novel convergence criteria and physics-based initial guesses to provide high fidelity for discretised P2D equations. We also include both the kinetic-limited and diffusion-limited models for Solid Electrolyte Interface (SEI) growth into an iterative P2D solver. With these SEI models, we can estimate the capacity fade in real time once the model is tuned to the cell–voltage curve. The results are validated using three different operation scenarios, including the 1C discharge/charge cycle, multiple-C-rate discharges, and the Lawrence Livermore National Laboratory dynamic stress test. The proposed solver shows at least a 4.5 times improvement in performance with less than 1% error when compared to commercial solvers.

Publisher

MDPI AG

Reference61 articles.

1. Prospects for lithium-ion batteries and beyond—A 2030 vision;Grey;Nat. Commun.,2020

2. A review on the key issues for lithium-ion battery management in electric vehicles;Lu;J. Power Sources,2013

3. Safety focused modeling of lithium-ion batteries: A review;Abada;J. Power Sources,2016

4. Overview of batteries and battery management for electric vehicles;Liu;Energy Rep.,2022

5. Plett, G.L. (2015). Battery Management Systems, Volume I: Battery Modeling, Artech House.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3