Revisiting Pulse-Based OCV Incremental Capacity Analysis for Diagnostics of Li-Ion Batteries

Author:

Wind Julia1ORCID,Vie Preben J. S.1ORCID

Affiliation:

1. Institute for Energy Technology (IFE), NO-2007 Kjeller, Norway

Abstract

This paper presents the concept of applying incremental capacity analysis (ICA) on the OCV curve in the SoC space. The OCV curve can be obtained from any sequence of discharge or charge current or power pulse with a necessary rest period to allow the cell to reach a pseudo-OCV after each pulse. With a high resolution (>100 pulses) in the full SoC window, an OCV-vs.-SoC curve can be obtained with sufficient accuracy to perform an ICA on the obtained OCV curve. ICA as a diagnostic technique has commonly been applied on Li-ion cells with constant charge and discharge at slow currents. However, a slow controlled constant current charge or discharge is normally not feasible and cannot be easily applied to a battery in an application. Here, we revisit pulse-based ICA to supplement the conventional constant-current-based technique. Based on actual ageing data, we show that ICA performed on a selection of high-resolution OCV curves is comparable or better than conventional ICA with constant current. The main advantage of OCV-ICA is that it can be applied to most cells and systems without a significant interruption of normal cell operation. OCV-ICA can provide valuable insights into ageing mechanisms as well as, e.g., detailed information on changes in internal resistance.

Funder

MoreIsLess

The Research Council of Norway

2ND LIFE

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3