Design of Hierarchical Nickel-Cobalt Phosphide/Nickel Oxide with Tunable Electronic Structure and Strong Chemical Interface for Advanced Supercapacitors

Author:

Zhang Gaini12ORCID,Liu Jingqian12,Shan Hui3,Ma Zhengdong12,Xu Yuhui12,Yang Zihao12,Zuo Jiaxuan12,Wang Jingjing12,Li Shufeng4ORCID,Li Xifei12

Affiliation:

1. Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi’an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China

2. Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation, Xi’an University of Technology, Xi’an 710048, China

3. Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China

4. Xi’an Key Laboratory of Advanced Powder Metallurgy Materials and New Technology, Xi’an University of Technology, Xi’an 710048, China

Abstract

The design of a reasonable heterostructure electrode to achieve enhanced areal performance for supercapacitors remains a great challenge. Here, we constructed hierarchical porous NiCoP/NiO nanocomposites anchored on Ni foam with tunable electronic and structural properties, as well as robust interfacial interaction. In NiCoP/NiO, the interconnected NiO nanosheets serve as a carrier with enriched anchoring sites to confine the NiCoP and improve its stability. Meanwhile, the ultrathin NiCoP nanosheets with bimetallic centers are connected with porous NiO nanosheets to form a reliable heterojunction, enhancing the electrochemical reaction kinetics. Taking advantage of the synergistic contribution of bimetallic centers, phosphides and unique structure, the NiCoP/NiO delivers a high areal specific capacitance (1860 mF cm−2 at 5 mA cm−2), good rate performance of 78.5% at six times the increased current density, and remarkable durability (11.0% decrease after 10,000 cycles). Furthermore, the assembled hybrid supercapacitor NiCoP/NiO//porous-activated carbon (PAC) delivers a high areal energy density of 173.7 μWh cm−2 (116.4 μWh cm−2) at 1.6 mW cm−2 (32 mW cm−2). The results indicate that the design of the heterostructure interface with strong chemical interface and tunable electronic structure is an effective and promising approach to boost the electrochemical performance for advanced supercapacitors.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3