Experimental Investigation of State and Parameter Estimation within Reconfigurable Battery Systems

Author:

Theiler Michael1,Schneider Dominik12,Endisch Christian1

Affiliation:

1. Research Group Electromobility and Learning Systems, Technische Hochschule Ingolstadt, D-85049 Ingolstadt, Germany

2. School of Engineering & Design, Institute for Electrical Drive Systems and Power Electronics, Technical University of Munich, D-80333 Munich, Germany

Abstract

The battery system is one of the most-important, but also -critical components in the electric power-train. The battery’s system states and parameters are commonly tracked by the battery monitoring system. However, in reality, the accuracy of the state and parameter estimation may suffer from insufficient excitation of the system. Since the current states and parameters serve as the basis for many battery management system functions, this might lead to incorrect operation and severe damage. Reconfigurable battery systems allow enhancing the system’s excitation by applying a switching operation. In this contribution, the state and parameter estimation of a reconfigurable battery module were simulated and tested experimentally. Thereby, a low-exciting and a high-exciting drive cycle were compared. Furthermore, the switching patterns were applied to enhance the excitation and, hence, improve the estimation of an extended Kalman filter. The cells were switched via a pulse-width modulation signal, and the influence of frequency and duty cycle variation on the estimation accuracy were investigated. Compared to the low-excitation input, a significant improvement in the estimation of up to 46% for the state of charge and 78% for the internal resistance were achieved. Hereby, low frequencies and duty cycles proved to be particularly advantageous. Switching, however, has only a limited influence on an already highly excited system and may lead to additional aging due to higher heat generation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3