Abstract
The effect of different nitrogen-doped carbon additives (carbon coating from polyaniline, N-doped carbon nanotubes, and N-doped carbon nanoparticles) on electrochemical performance of nanocomposites based on the olivine-type LiFePO4 was investigated. Prepared materials were characterized by XRD, SEM, TGA-MS, CHNS-analysis, IR-, Raman, and impedance spectroscopies. Polyaniline deposition on the LiFePO4 precursor with following annealing lead to the formation of a LiFePO4/C nanocomposite with a carbon coating doped with nitrogen. Due to nitrogen atoms presence in carbon coating, the LiFePO4/N-doped carbon nanocomposites showed enhanced conductivity and C-rate capability. The discharge capacities of the synthesized materials in LIBs were close to the theoretical value at 0.1 C and retained high values with increasing current density. At high C-rates, the best results were obtained for a more dispersed LiFePO4/C composite with carbon coating prepared from polyaniline previously in situ deposited on LiFePO4 precursor particles. Its discharge capacity reached 96, 84, 73, and 47 mAh g−1 at 5, 10, 20, and 60 C-rates, respectively.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献