Thermal Modeling Approaches for a LiCoO2 Lithium-ion Battery—A Comparative Study with Experimental Validation

Author:

Paccha-Herrera EdwinORCID,Calderón-Muñoz Williams R.ORCID,Orchard MarcosORCID,Jaramillo FranciscoORCID,Medjaher Kamal

Abstract

Temperature prediction of a battery plays a significant role in terms of energy efficiency and safety of electric vehicles, as well as several kinds of electric and electronic devices. In this regard, it is crucial to identify an adequate model to study the thermal behavior of a battery. This article reports a comparative study on thermal modeling approaches by using a LiCoO2 26650 lithium-ion battery, and provides a methodology to characterize electrothermal phenomena. Three approaches have been implemented numerically—a thermal lumped model, a 3D computational fluid dynamics model, and an electrochemical model based on Newman, Tiedemann, Gu and Kim formulation. The last two methods were solved using ANSYS Fluent software. Simulations were validated with experimental measurements of the cell surface temperature at constant current discharge and under a highway driving cycle. Results show that the three models are consistent with actual temperature measurements. The electrochemical method has the lower error at 0.5C. Nevertheless, this model provides the higher error ( 1.3∘C) at 1.5C, where the maximum temperature increase of the cell was 18.1∘C. Under the driving cycle, all the models are in the same order of error. Lumped model is suitable to simulate a wide range of battery operating conditions. Furthermore, this work was expanded to study heat generation, voltage and heat transfer coefficient under natural convection.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3