Constructing a LiPON Layer on a 3D Lithium Metal Anode as an Artificial Solid Electrolyte Interphase with Long-Term Stability

Author:

Pan Qianmu1,Yu Yongkun1,Zhu Yuxin1,Shen Chunli1,Gong Minjian1,Yan Kui1,Xu Xu1

Affiliation:

1. International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

Abstract

The problem of lithium dendrite growth has persistently hindered the advancement of lithium metal batteries. Lithium phosphorus oxynitride (LiPON), functioning as an amorphous solid electrolyte, is extensively employed as an artificial solid electrolyte interphase (SEI) owing to its remarkable stability and mechanical strength, which is beneficial for effectively mitigating dendrite growth. Nevertheless, the significant challenge arises from the volume changes in the Li metal anode during cycling, leading to the vulnerability of LiPON due to its high rigidity, which impedes the widespread use of LiPON. To address this problem, our study introduces a lithium-boron (Li-B) alloy as the anode, featuring a 3D structure, which can be synergistic with the artificial LiPON layer during cycling, leading to a better performance. The average Coulombic efficiency (CE) of a Li || Cu half-cell reaches 95% over 120 cycles. The symmetric cells exhibit sustained operation for 950 h with a low voltage polarization of less than 20 mV under a current density of 0.5 mA/cm2 and for 410 h under 1 mA/cm2.

Funder

Hubei Provincial Natural Science Foundation of China

National Innovation and Entrepreneurship Training Program for College Students

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3