Thermal Management for Battery Module with Liquid-Cooled Shell Structure under High Charge/Discharge Rates and Thermal Runaway Conditions

Author:

Xu Kangdi1,Zhang Hengyun1ORCID,Zhu Jiajun1,Qiu Guojun1

Affiliation:

1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang, Shanghai 201620, China

Abstract

In this paper, the thermal management of a battery module with a novel liquid-cooled shell structure is investigated under high charge/discharge rates and thermal runaway conditions. The module consists of 4 × 5 cylindrical batteries embedded in a liquid-cooled aluminum shell with multiple flow channels. The battery module thermal management and the suppression of thermal propagation were experimentally examined. The temperature rise of the battery in the discharging process is significantly greater than that in the charging phase. As the coolant flow speed increases, the maximum temperature of the battery module decreases slightly, while the temperature difference remains at the same level, at the expense of a much-increased pressure drop. With the presented liquid-cooled shell, the suppression of thermal propagation was investigated for both internal and corner battery thermal runaway. It is found that the temperature of the adjacent battery can be maintained at under 70 °C, indicating that the propagation of thermal runaway can be successfully suppressed by heat dissipation through the surrounding liquid flow. In addition, the electrically induced thermal profile along the battery interconnection was identified through thermal imaging. Hot spots were found on the confluence busbars of the batteries in series connection. In order to improve the safety of battery modules, a parallel battery connection in the battery module is recommended, which can reduce the busbar temperature by 4.86 °C, as determined through numerical simulations. Experimental measurements were also conducted to verify the simulation results.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3