State of Charge Estimation for Lithium-Ion Battery Based on Unscented Kalman Filter and Long Short-Term Memory Neural Network

Author:

Zeng Yi1ORCID,Li Yan1ORCID,Yang Tong1

Affiliation:

1. School of Control Science and Engineering, Shandong University, Jinan 250061, China

Abstract

State of charge (SOC) estimation is the core algorithm of the battery management system. However, the commonly used model-based, data-driven, or experiment-based methods struggle to independently achieve accurate SOC estimation under different working conditions and temperatures, which affects battery performance and safety. To this end, this paper proposes an online SOC estimation method that combines the model-driven and double-data-driven approaches. The unscented Kalman filter (UKF) based on the first-order RC model is used to achieve robust SOC estimation, while the data-driven long short-term memory (LSTM) neural network is used to achieve fast SOC estimation. The former model has an excellent dynamic performance and the latter has high steady-state accuracy. The SOC estimation results are input into the SOC estimation model of series LSTM so that the stable but inaccurate SOC values estimated by UKF in the first part and the accurate but fluctuating SOC values estimated by LSTM can be correlated and corrected, achieving a fast and accurate SOC estimation under various working conditions. The estimation results show that the above method has strong robustness and high accuracy, and effectively reduces model complexity and data redundancy. In addition, the root mean square error of SOC estimation under different working conditions is controlled within 1–2.3% at 0 °C, 25 °C, and 45 °C, which is better than the traditional single-SOC estimation method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3