Graphite Felt as an Innovative Electrode Material for Alkaline Water Electrolysis and Zinc–Air Batteries

Author:

Lee Yejin1,Park Seung-hee1,Ahn Sung Hoon1ORCID

Affiliation:

1. Department of Bio-chemical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea

Abstract

Recent advancements in energy conversion and storage systems have placed a spotlight on the role of multi-functional electrodes employing conductive substrates. These substrates, however, often face obstacles due to intricate and expensive production methods, as well as limitations in thickness. This research introduces a novel, economical approach using graphite felt as a versatile electrode. A method to enhance the typically low conductivity of graphite felt was devised, incorporating interfacial chemical tuning and the electrodeposition of a highly conductive nickel layer. This technique facilitates the integration of diverse transition metal-based active sites, aiming to refine the catalytic activity for specific electrochemical reactions. A key finding is that a combination of a nickel-rich cathode and an iron-rich anode can effectively optimize alkaline water electrolysis for hydrogen production at the ampere scale. Furthermore, the addition of sulfur improves the bi-functional oxygen-related redox reactions, rendering it ideal for air cathodes in solid-state zinc–air batteries. The assembled battery exhibits impressive performance, including a peak power density of 62.9 mW cm−2, a minimal voltage gap in discharge–charge polarization, and a lifecycle surpassing 70 h. This advancement in electrode technology signifies a significant leap in energy storage and conversion, offering a sustainable and efficient solution for future energy systems.

Funder

Ministry of Education

Ministry of Science, ICT and Future Planning

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3