Effect of Partial Cation Replacement on Anode Performance of Sodium-Ion Batteries

Author:

He Shijiang1,Wang Zidong2,Qiu Wenbo1,Zhao Huaping2,Lei Yong2

Affiliation:

1. Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China

2. Fachgebiet Angewandte Nanophysik, Institut für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693 Ilmenau, Germany

Abstract

Due to their high specific capacity and long cycle life, bimetallic sulfides are the preferred choice of researchers as anodes in sodium-ion batteries (SIBs). However, studies indicate that this class of materials often requires expensive elements such as Co, Sb, Sn, etc., and their performance is insufficient with the use of inexpensive Fe, V alone. Therefore, there is a need to explore the relationship between metal cations and anode performance so that the requirements of cost reduction and performance enhancement can be met simultaneously. In this work, a series of partially replaced sulfides with different cation ratios have been prepared by a hydrothermal method followed by heat treatment. By partially replacing Co in NiCo sulfides, all samples show improved capacity and stability over the original NiCo sulfides. As a result, the metal elements have different oxidation states, which leads to a higher capacity through their synergistic effects on each other. Mn-NiCoS with 10% replacement showed satisfactory capacity (721.09 mAh g−1 at 300 mA g−1, 662.58 mAh g−1 after 20 cycles) and excellent cycle life (85.41% capacity retention after 1000 cycles at 2000 mA g−1).

Funder

German Research Foundation

Sino-German Center for Research Promotion

National Natural Science Foundation of China

China Scholarship Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3