Impact of Full Prelithiation of Si-Based Anodes on the Rate and Cycle Performance of Li-Ion Capacitors

Author:

Eguchi TakuyaORCID,Sugawara Ryoichi,Abe Yusuke,Tomioka Masahiro,Kumagai SeijiORCID

Abstract

The impact of full prelithiation on the rate and cycle performance of a Si-based Li-ion capacitor (LIC) was investigated. Full prelithiation of the anode was achieved by assembling a half cell with a 2 µm-sized Si anode (0 V vs. Li/Li+) and Li metal. A three-electrode full cell (100% prelithiation) was assembled using an activated carbon (AC) cathode with a high specific surface area (3041 m2/g), fully prelithiated Si anode, and Li metal reference electrode. A three-electrode full cell (87% prelithiation) using a Si anode prelithiated with 87% Li ions was also assembled. Both cells displayed similar energy density levels at a lower power density (200 Wh/kg at ≤100 W/kg; based on the total mass of AC and Si). However, at a higher power density (1 kW/kg), the 100% prelithiation cell maintained a high energy density (180 Wh/kg), whereas that of the 87% prelithiation cell was significantly reduced (80 Wh/kg). During charge/discharge cycling at ~1 kW/kg, the energy density retention of the 100% prelithiation cell was higher than that of the 87% prelithiation cell. The larger irreversibility of the Si anode during the initial Li-ion uptake/release cycles confirmed that the simple full prelithiation process is essential for Si-based LIC cells.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3