Investigating the Effect of Different Bidirectional Pulsed Current Parameters on the Heat Generation of Lithium-Ion Battery at Low Temperatures

Author:

Huang Ranjun12,Wei Gang12ORCID,Jiang Bo12,Zhu Jiangong12,Pan Xiangmin3,Wang Xueyuan12ORCID,Zhou Xiangyang3,Ye Jiping3,Wei Xuezhe12,Dai Haifeng12

Affiliation:

1. Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China

2. School of Automotive Studies, Tongji University, Shanghai 201804, China

3. Shanghai AI NEV Innovative Platform Co., Ltd., Shanghai 201804, China

Abstract

Bidirectional pulsed current (BPC) heating has proven to be an effective method for internal heating. However, current research has primarily focused on the impact of symmetrical BPC on battery heat generation, while neglecting the influence of different BPC parameters. To address this gap, this paper investigates the effects of various BPC parameters on battery heat generation. Initially, an electro-thermal coupled model of the battery is constructed based on the results of electrochemical impedance spectroscopy (EIS) tests conducted at different temperatures and amplitudes at 20% state of charge (SOC). The validation results of the model demonstrate that the absolute errors of voltage and temperature are generally less than 50 mV and 1.2 °C. Subsequently, the influence of BPC parameters on battery heat generation is examined under different terminal voltage constraints, temperatures, and frequencies. The findings at 20% SOC reveal that symmetrical BPC does not consistently correspond to the maximum heating power. The proportion of charge time and discharge time in one cycle, corresponding to the maximum heating power, varies depending on the charge and discharge cut-off voltages. Moreover, these variations differ across frequencies and temperatures. When the terminal voltage is constrained between 3 V and 4.2 V, the maximum heat power corresponds to a discharge time share of 0.55 in one cycle. In conclusion, the results underscore the complex relationship between BPC parameters and battery heat generation, which can further enhance our understanding of effective heating strategies for batteries.

Funder

National Natural Science Foundation of China

Program of Shanghai Academic/Technology Research Leader

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3