Freestanding Carbon Nanofibers Derived from Biopolymer (Kraft Lignin) as Ultra-Microporous Electrodes for Supercapacitors

Author:

Dias Yasmin J.1,Silva Vinícius D.12ORCID,Pourdeyhimi Behnam3,Medeiros Eliton S.2,Yarin Alexander L.14ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607-7022, USA

2. Materials Science and Engineering Postgraduate Program, Universidade Federal da Paraiba (UFPB), João Pessoa 58051-900, Brazil

3. The Nonwovens Institute, North Carolina State University, P.O. Box 8301, Raleigh, NC 27695-8301, USA

4. School of Mechanical Engineering, Korea University, Seoul 136-713, Republic of Korea

Abstract

Lignin-derived carbon nanofibers (LCNFs) formed via the solution blowing of a biopolymer are developed here as a promising replacement for polyacrylonitrile (PAN)-derived carbon nanofibers (PCNFs) formed via electrospinning for such applications as supercapacitor (SC) electrodes. Accordingly, it is demonstrated here that a biopolymer (kraft lignin, which is, essentially, a waste material) can substitute a petroleum-derived polymer (PAN). Moreover, this can be achieved using a much faster and safer fiber-forming method. The present work employs the solution blowing of lignin-derived nonwovens and their carbonization to form electrode materials. These materials are characterized and explored as the electrodes in supercapacitor prototypes. Given the porosity importance of carbon fibers in SC applications, N2 gas adsorption tests were performed for characterization. LCNFs revealed the specific surface area (SSA) and capacitance values as high as 1726 m2/g and 11.95 F/g, which are about one-half of those for PCNFs, 3624 m2/g and 25.5 F/g, respectively. The capacitance values of LCNFs are comparable with those reported in the literature, but the SSA observed here is much higher. Moreover, no further post-carbonization activation steps were performed here in comparison with those materials reported in the literature. It was also found here that fiber pre-oxidation in air prior to carbonization and the addition of zinc chloride affect the SSA and capacitance values of both LCNFs and PCNFs. The electrochemical tests of the SCs prototypes were used to evaluate their capacitance at different charging rates, voltage windows, and the number of cycles. The capacitance of PCNFs decreased by about 47% during fast charging, while the capacitance of LCNFs improved during fast charging, bringing them to the level of only 21% below that of PCNFs. These changes were correlated with the packing density of the electrodes. It should be emphasized that LCNFs revealed a much higher mass yield, which was 4–5 times higher than that of PCNFs. LCNFs also possess a higher packing density, a lower price, and cause a significantly lower environmental impact than PCNFs. The best cell supercapacitor delivered a maximum specific energy of 1.77 Wh/kg and a maximum specific power of 156 kW/kg, surpassing conventional electrochemical supercapacitors. Remarkably, it retained 95.2% of its initial capacitance after 10,000 GCD cycles at a current density of 0.25 A/g, indicating robust stability. Accordingly, kraft lignin, a bio-waste material, holds great promise as a raw material for supercapacitor electrodes.

Funder

Nonwovens Institute

CNPQ

CAPES

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3