Crosslinked PVA/Citric Acid Nanofibrous Separators with Enhanced Mechanical and Thermal Properties for Lithium-Ion Batteries

Author:

Cai Shuangyang1,Liang Yuexi1,Wu Jialu1,Chen Haizhen1,Wei Zhenzhen1ORCID,Zhao Yan1ORCID

Affiliation:

1. National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China

Abstract

Electrospinning polyvinyl alcohol (PVA) nanofibrous membranes have gained increased attention for their uses as separators for lithium-ion batteries (LIBs) due to their high porosity and excellent electrolyte wettability, but their poor mechanical and thermal properties have limited their further development. In this work, a crosslinked PVA composite separator (PVA/CA-H) was first prepared via the electrospinning of the PVA and citric acid (CA) mixed solution and then the heating of the nanofibrous membrane, and the effects of the amount of CA on the structure and performance of the PVA/CA-H separator were investigated. The hydroxyl group of PVA and the carboxyl group of CA were crosslinked under the heat treatment, resulting in a slight reduction in the porosity and pore size of the composite separator compared to pure PVA, and to compensate for this issue, the mechanical strengths, as well as the thermal dimensional stability of the PVA/CA-H separator, were significantly improved. Meanwhile, the PVA/CA-H separator exhibited good electrolyte uptake (158.1%) and high ionic conductivity (1.63 mS cm−1), and, thus, the battery assembled with the PVA/CA-H separator exhibited a capacity retention of 96.3% after 150 cycles at 1 C. These features mean that the crosslinked PVA composite separator can be considered as a prospective high-safety and high-performance separator for LIBs.

Funder

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Key Laboratory of Flame Retardancy Finishing of Textile Materials, CNTAC

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3