Flexible and Stable N-Isopropylacrylamide/Sodium Alginate Gel Electrolytes for Aqueous Zn-MNO2 Batteries

Author:

Wang Kehuang1,Shangguan Mingliang1,Zhao Yibo1,Tian Haoran1,Wang Fu1,Yuan Jinliang1ORCID,Xia Lan1ORCID

Affiliation:

1. Ningbo Innovation Team on New Energies and Marine Applications, Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China

Abstract

Rechargeable aqueous Zn-ion batteries (ZIBs) have attracted considerable attention owing to their high theoretical capacity of 820 mA h g−1, low cost and intrinsic safety. However, the electrolyte leakage and the instability issues of Zn negative electrodes originating from side reactions between the aqueous electrolyte and Zn negative electrode not only restrict the battery stability, but also result in the short circuit of aqueous ZIBs. Herein, we report a flexible and stable N-isopropylacrylamide/sodium alginate (N-SA) gel electrolyte, which possesses high mechanical strength and high ionic conductivity of 2.96 × 10−2 S cm−1, and enables the Zn metal negative electrode and MnO2 positive electrode to reversibly and stably cycle. Compared to the liquid electrolyte, the N-SA hydrogel electrolyte can effectively form a uniform Zn deposition and suppress the generation of irreversible by-products. The assembled symmetric Zn/Zn cells at a current density of 1 mA cm−2 (capacity: 1 mAh cm−2) show a stable voltage profile, which maintains a low level of about 100 mV over 2600 h without an obvious short circuit or any overpotential increasing. Specially, the assembled Zn/N-SA/MnO2 batteries can deliver a high specific capacity of 182 mAh g−1 and maintain 98% capacity retention after 650 cycles at 0.5 A g−1. This work provides a simple method to fabricate high-performance SA-based hydrogel electrolytes, which illustrates their potential for flexible batteries for wearable electronics.

Funder

National Natural Science Foundation of China

Ningbo Science & Technology Innovation 2025 Major Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3