Zn-Co-Mo-rGO Ultra-Thin Nanosheets Arrays-Based Electrode Materials for Asymmetric Supercapacitor

Author:

Liu Shuang1,He Siwei1,Xiang Yanhong1,Peng Xiaochun2,Xiong Lizhi3,Wu Jianhua1

Affiliation:

1. College of Physics and Electromechanical Engineering, Jishou University, Jishou 416000, China

2. College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China

3. College of Pharmacy, Jishou University, Jishou 416000, China

Abstract

The design of electrode materials for supercapacitors (SCs) with high specific capacity and high energy density has always been a research hotspot. In this paper, ternary metal oxides Zn-Co-Mo-rGO (ZCMG) and Zn-Co-Mo (ZCM) based electrode materials were prepared by one-step hydrothermal method. Compared with the ZCM, SEM and TEM results demonstrates the ultra-thin nanosheets grown vertically on the nickel foam for ZCMG. Owing to synergistic effect of the multi-component composites, the as-prepared electrode with ZCMG exhibits the specific capacity of 713 C g−1 (1189 F g−1) at 1 A g−1, which was higher than that of ZCM without rGO (492 F g−1, 295 C g−1). The assembled ZCMG//AC (activated carbon) asymmetric supercapacitor (ASC) delivers the maximum specific capacity of 68 C g−1 (45 F g−1) at 1 A g−1. After 1000 cycles, it still has a high-capacity retention rate of 95%. Furthermore, the ASC exhibited an energy density of 14 Wh kg−1 at 750 W kg−1, and it can retain 5.23 Wh kg−1, even at 7500 W kg−1.

Funder

Natural Science Foundation of Hunan Province, China

National Natural Science Foundation of China

Research Foundation of Jishou University of Hunan Province, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3