Affiliation:
1. Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
Abstract
NaCrO2 is a promising cathode for Na-ion batteries. However, further studies of the mechanisms controlling its specific capacities and cycle stability are needed for real-world applications in the future. This study reveals, for the first time, that the typical specific capacity of ~110 mAh/g reported by many researchers when the charge/discharge voltage window is set between 2.0 and 3.6 V vs. Na/Na+ is actually controlled by the low electronic conductivity at the electrode/electrolyte interface. Through wet solution mixing of NaCrO2 particles with carbon precursors, uniform carbon coating can be formed on the surface of NaCrO2 particles, leading to unprecedented specific capacities at 140 mAh/g, which is the highest specific capacity ever reported in the literature with the lower and upper cutoff voltages at the aforementioned values. However, such carbon-coated NaCrO2 with ultrahigh specific capacity does not improve cycle stability because with the specific capacity at 140 mAh/g the Na deintercalation during charge is more than 50% Na ions per formula unit of NaCrO2 which leads to irreversible redox reactions. The insights from this study provide a future direction to enhance the long-term cycle stability of NaCrO2 through integrating carbon coating and doping.
Funder
U.S. National Science Foundation
Subject
Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology