Aqueous Rechargeable Sodium-Ion Batteries: From Liquid to Hydrogel

Author:

Yang Mingrui,Luo Jun,Guo Xiaoniu,Chen JiachengORCID,Cao Yuliang,Chen Weihua

Abstract

Sodium-ion batteries stand out as a promising technology for developing a new generation of energy storage devices because of their apparent advantages in terms of costs and resources. Aqueous electrolytes, which are flame-resistant, inexpensive, and environmentally acceptable, are receiving a lot of attention in light of the present environmental and electronic equipment safety concerns. In recent decades, numerous improvements have been made to the performance of aqueous sodium-ion batteries (ASIBs). One particular development has been the transition from liquid to hydrogel electrolytes, whose durability, flexibility, and leakproof properties are eagerly anticipated in the next generation of flexible wearable electronics. The current review examines the most recent developments in the investigation and development of the electrolytes and associated electrode materials of ASIBs. An overview of new discoveries based on cycle stability, electrochemical performance, and morphology is presented along with previously published data. Additionally, the main milestones, applications, and challenges of this field are briefly discussed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3