Techno-Economic Analysis of Different Battery Cell Chemistries for the Passenger Vehicle Market

Author:

Hasselwander Samuel1ORCID,Meyer Markus1,Österle Ines1

Affiliation:

1. Institute of Vehicle Concepts, German Aerospace Center (DLR), Wankelstraße 5, 70563 Stuttgart, Germany

Abstract

The introduction of battery electric vehicles on the global market has triggered a sustained upheaval in the automotive industry. In this process, the new properties of a battery-electric powertrain lead to a different set of central requirements, such as increasing the range, lifetime or the fast-charging capability of the vehicle battery. This paper develops a bottom-up systematic model to assess the current and future impact of different battery technologies on vehicle costs. For this purpose, it summarises the scientific findings of automotive battery cell chemistries and, flanked by novel expert interviews and teardown data, derives key values for them. Based on the data obtained, modelling is carried out to demonstrate the technical and economic suitability of the identified cell chemistries and their impact on the range and total cost of electric vehicles. Lithium iron phosphate batteries appear to be able to achieve a price saving of up to 21% in the small vehicle segment compared to nickel-rich cell chemistries, provided that customers are prepared to accept a reduced range. At the same time, further efficiency improvements of the powertrain lead us to expect that, in combination with future high-energy cells, ranges of more than 800 km can be achieved even in the mid-size vehicle segment. It turns out that depending on whether the focus of the vehicle is on cost, range or performance, different battery technologies are likely to be used in the future.

Funder

German Aerospace Center

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Reference84 articles.

1. Hagedorn, M., Hartmann, S., Heilert, D., Harter, C., Olschewski, I., Eckstein, L., Baum, M., and Henzelman, J. (2019). Automobile Wertschöpfung 2030/2050.

2. Tschöke, H., Gutzmer, P., and Pfund, T. (2019). Elektrifizierung des Antriebsstrangs, Springer.

3. Bundesministerium für Umwelt, Naturschutz und Nukleare Sicherheit (2022, March 31). Das System der CO2-Flottengrenzwerte für PKW und Leichte Nutzfahrzeuge, Available online: https://www.bmuv.de/fileadmin/Daten_BMU/Download_PDF/Luft/zusammenfassung_co2_flottengrenzwerte.pdf.

4. Aral Aktiengesellschaft (2021). Aral Studie. Trends beim Autokauf 2021, Aral Aktiengesellschaft.

5. Vekić, N. (2020). Lithium-Ionen-Batterie für die Elektromobilität: Status, Zukunftsperspektiven, Recycling, ThinkTank Industrial.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3