Author:
Theiler Michael,Schneider Dominik,Endisch Christian
Abstract
To ensure a reliable and safe operation of battery systems in various applications, the system’s internal states must be observed with high accuracy. Hereby, the Kalman filter is a frequently used and well-known tool to estimate the states and model parameters of a lithium-ion cell. A strong requirement is the selection of a suitable model and a reasonable initialization, otherwise the algorithm’s estimation might be insufficient. Especially the process noise parametrization poses a difficult task, since it is an abstract parameter and often optimized by an arbitrary trial-and-error principle. In this work, a traceable procedure based on the genetic algorithm is introduced to determine the process noise offline considering the estimation error and filter consistency. Hereby, the parameters found are independent of the researcher’s experience. Results are validated with a simulative and experimental study, using an NCA/graphite lithium-ion cell. After the transient phase, the estimation error of the state-of-charge is lower than 0.6% and for internal resistance smaller than 4mΩ while the corresponding estimated covariances fit the error well.
Subject
Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献