Life Cycle Assessment and Costing of Large-Scale Battery Energy Storage Integration in Lombok’s Power Grid

Author:

Hemmati Mohammad1ORCID,Bayati Navid1ORCID,Ebel Thomas1ORCID

Affiliation:

1. Center for Industrial Electronics, University of Southern Denmark, 6400 Sønderborg, Denmark

Abstract

One of the main challenges of Lombok Island, Indonesia, is the significant disparity between peak load and base load, reaching 100 MW during peak hours, which is substantial considering the island’s specific energy dynamics. Battery energy storage systems provide power during peak times, alleviating grid stress and reducing the necessity for grid upgrades. By 2030, one of the proposed capacity development scenarios on the island involves deploying large-scale lithium-ion batteries to better manage the integration of solar generation. This paper focuses on the life cycle assessment and life cycle costing of a lithium iron phosphate large-scale battery energy storage system in Lombok to evaluate the environmental and economic impacts of this battery development scenario. This analysis considers a cradle-to-grave model and defines 10 environmental and 4 economic midpoint indicators to assess the impact of battery energy storage system integration with Lombok’s grid across manufacturing, operation, and recycling processes. From a life cycle assessment perspective, the operation subsystem contributes most significantly to global warming, while battery manufacturing is responsible for acidification, photochemical ozone formation, human toxicity, and impacts on marine and terrestrial ecosystems. Recycling processes notably affect freshwater due to their release of 4.69 × 10−4 kg of lithium. The life cycle costing results indicate that over 85% of total costs are associated with annualized capital costs at a 5% discount rate. The levelized cost of lithium iron phosphate batteries for Lombok is approximately 0.0066, demonstrating that lithium-ion batteries are an economically viable option for Lombok’s 2030 capacity development scenario. A sensitivity analysis of input data and electricity price fluctuations confirms the reliability of our results within a 20% margin of error. Moreover, increasing electricity prices for battery energy storage systems in Lombok can reduce the payback period to 3.5 years.

Funder

DANIDA Fellowship Centre and the Ministry of Foreign Affairs of Denmark

Publisher

MDPI AG

Reference47 articles.

1. KPMG (2019). Investing in Lombok—Prefeasibility Studies on Renewable Energy Solutions in Lombok, KPMG.

2. Nasional, D.E. (2017). Technology Data for the Indonesian Power Sector: Catalogue for Generation and Storage of Electricity, Dewan Energi Nasional, Kemetrian Energi dan Sumber Daya Mineral.

3. Day-ahead profit-based reconfigurable microgrid scheduling considering uncertain renewable generation and load demand in the presence of energy storage;Hemmati;J. Energy Storage,2020

4. Hybrid Robust Stochastic Bidding Strategy for Wind Farms Integrated with Compressed Air Energy Storage and Power to Gas Technology;Hosseini;J. Model. Eng.,2021

5. Life cycle assessment of lithium-ion batteries: A critical review;Arshad;Resour. Conserv. Recycl.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3