Battery Aging Models Based on High-Current Incremental Capacity in Fast Charging

Author:

Lombardi LudovicoORCID,Ospina Agudelo BrianORCID,Zamboni WalterORCID,Monmasson EricORCID

Abstract

This paper presents battery aging models based on high-current incremental capacity features in the presence of battery cycling profiles characterized by fast charging conditions. In particular, the main peak area under the incremental capacity graph is proposed as a capacity indicator. A dataset from the Toyota Research Institute is analyzed. Batteries’ cycling data are characterized by various single- or double-step fast charges in constant current to reach 80% of the battery state of charge; the remaining charge process is performed by a 1C charge. Depending on the battery, a linear or logarithmic model was identified as the best suitable for representing the capacity–peak area relationship. The generalization capabilities of the proposed models are evaluated by performing an inference analysis of the fitting results over groups of batteries. Finally, we evaluated the prediction performance of the models by adopting a cross-validation approach.

Funder

Holistic approach to EneRgy-efficient smart nanOGRIDS—HEROGRIDS

FARB funds of the University of Salerno

French National Research Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3