Fabrication of Cu2O/CuO Nanowires by One-Step Thermal Oxidation of Flexible Copper Mesh for Supercapacitor Applications

Author:

Morariu (Popescu) Mina-Ionela12,Nicolaescu Mircea1,Hulka Iosif3ORCID,Duţeanu Narcis2ORCID,Orha Corina1,Lăzău Carmen1,Bandas Cornelia1ORCID

Affiliation:

1. Condensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter Timisoara, 300224 Timisoara, Romania

2. Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, 300223 Timisoara, Romania

3. Research Institute for Renewable Energies, Politehnica University of Timisoara, 300501 Timisoara, Romania

Abstract

This study focuses on the growth of Cu2O/CuO nanowires by one-step thermal oxidation using a flexible copper mesh at oxidation temperatures in the range of 300 to 600 °C in a controlled atmosphere of mixed-flow Ar and O2 gases. Thermal oxidation is one of the simplest used methods to obtain nanowires on a metal surface, offering advantages such as low production costs and the ability to produce metal oxides on a large scale without the use of hazardous chemical compounds. The growth of metal oxides on a conductive substrate, forming metal/oxide structures, has proven to be an effective method for enhancing charge-transfer efficiency. The as-synthesized Cu/Cu2O/CuO (Nw) electrodes were structurally and morphologically characterized using techniques such as XRD and SEM/EDX analysis to investigate the structure modification and morphologies of the materials. The supercapacitor properties of the as-developed Cu/Cu2O/CuO (Nw) electrodes were then examined using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) measurements, and electrochemical impedance spectroscopy (EIS). The CV curves show that the Cu/Cu2O/CuO (Nw) structure acts as a positive electrode, and, at a scan rate of 5 mV s −1, the highest capacitance values reached 26.158 mF cm−2 for the electrode oxidized at a temperature of 300 °C. The assessment of the flexibility of the electrodes was performed at various bending angles, including 0°, 45°, 90°, 135°, and 180°. The GCD analysis revealed a maximum specific capacitance of 21.198 mF cm−2 at a low power density of 0.5 mA cm−2 for the oxidation temperature of 300 °C. The cycle life assessment of the all of the as-obtained Cu/Cu2O/CuO (Nw) electrodes over 500 cycles was performed by GCD analysis, which confirmed their electrochemical stability.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3