Abstract
Safety issues with lithium-ion batteries prevent their widespread use in critical areas of technology. Various types of protective systems have been proposed to prevent thermal runaway and subsequent battery combustion. Among them, thermoresistive systems, representing polymer composites that sharply increase their resistance when the temperature rises, have been actively investigated. However, they are triggered only when the heating of the battery has already occurred, i.e., the system undergoes irreversible changes. This paper describes a new type of protective polymer layer based on the intrinsically conducting polymer poly[Ni(CH3OSalen)]. The response mechanism of this layer is based on an increase in resistance both when heated and when the cell voltage exceeds the permissible range. This makes it possible to stop undesirable processes at an earlier stage. The properties of the polymer itself and of the lithium-ion batteries modified by the protective layer have been studied. It is shown that the introduction of the polymer protective layer into the battery design leads to a rapid increase of the internal resistance at short circuit, which reduces the discharge current and sharply reduces the heat release. The effectiveness of the protection is confirmed by analysis of the battery components before the short circuit and after it.
Funder
Russian Science Foundation
Subject
Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献