Differentiating Cyclability and Kinetics of Na+ Ions in Surface-Functionalized and Nanostructured Graphite Using Electrochemical Impedance Spectroscopy

Author:

Dey Sonjoy1ORCID,Singh Gurpreet1

Affiliation:

1. Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506, USA

Abstract

The revolution in lithium-ion battery (LIB) technology was partly due to the invention of graphite as a robust negative electrode material. However, equivalent negative electrode materials for complementary sodium ion battery (NIB) technologies are yet to be commercialized due to sluggish reaction kinetics, phase instability, and low energy density originating from the larger size of Na+-ion. Therefore, in search of the next-generation electrode materials for NIBs, we first analyze the failure of graphite during reversible Na+ ion storage. Building upon that, we suggest surface-functionalized and nanostructured forms of analogous carbon allotropes for enhancing Na+ ion storage. During long-term rigorous cycling conditions, Graphene Oxide (GO) and Graphene nanoplatelets (GNP) exhibit higher Na+ ion storage (157 mAh g−1 and 50 mAh g−1 after 60 cycles, respectively) compared to graphite (27 mAh g−1). Optimizing alternative NIBs requires a comprehensive analysis of cycling behavior and kinetic information. Therefore, in this investigation, we further examine ex-situ electrochemical impedance spectroscopy (EIS) at progressive cycles and correlate capacity degradation with impedance arising from the electrolyte, solid electrolyte interphase formation, and charge transfer.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3