Freeze-Drying-Assisted Preparation of High-Compaction-Density LiMn0.69Co0.01Fe0.3PO4 Cathode Materials with High-Capacity and Long Life-Cycle for Lithium Ion Batteries

Author:

Liu Shaojun1,Zheng Jingang1,Huang Hao1,Li Hongyang1,Zhang Han1ORCID,Li Lixiang1,An Baigang1,Xiao Yuanhua2,Sun Chengguo13ORCID

Affiliation:

1. School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China

2. State Laboratory of Surface and Interface Science and Technology, College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China

3. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

As a successor to LiFePO4, the research interest in LiMn1−yFeyPO4 has been sustained due to its higher working voltage and safety features. However, its further application is limited by the low compaction density caused by uncontrolled particle size. In this study, the high-quality LiMn0.69Co0.01Fe0.3PO4 (LMFP) materials were prepared using the freeze-drying method to process the LMFP precursor synthesized through a solvothermal crystallization method followed by a calcination process at different temperatures (400–550 °C). The results demonstrate that the obtained particles exhibit a spheroidal shape with a low specific surface area after secondary crystallization calcination at 700 °C. The compaction density increased from 1.96 g/cm3 for LMFP precursor (LMFP-M1) to 2.18, 2.27, 2.34, and 2.43 g/cm3 for samples calcined at 400, 450, 500 and 550 °C, respectively, achieving a maximum increase of 24%. The full cell constructed with the high-compaction-density material calcined at 500 °C displayed discharge capacities of 144.1, 143.8, and 142.6 mAh/g at 0.5, 1, and 3 C rates, respectively, with a retention rate of 99% at 3 C rate. After undergoing charging and discharging cycles at a rate of 1 C for up to 800 cycles, the capacity retention rate was found to be 90%, indicating an expected full cell life span exceeding 2500 cycles.

Funder

National Natural Science Foundation of China

Natural Science Foundation for Excellent Young Scholars of Henan Province

Program for Science and Technology Innovation Talents in Universities of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3