Thermo-Electro-Mechanical Modeling and Experimental Validation of Thickness Change of a Lithium-Ion Pouch Cell with Blend Positive Electrode

Author:

Schmider David1ORCID,Bessler Wolfgang G.1ORCID

Affiliation:

1. Institute of Sustainable Energy Systems (INES), Offenburg University of Applied Sciences, Badstraße 24, 77652 Offenburg, Germany

Abstract

Lithium-ion battery cells exhibit a complex and nonlinear coupling of thermal, electrochemical, and mechanical behavior. In order to increase insight into these processes, we report the development of a pseudo-three-dimensional (P3D) thermo-electro-mechanical model of a commercial lithium-ion pouch cell with graphite negative electrode and lithium nickel cobalt aluminum oxide/lithium cobalt oxide blend positive electrode. Nonlinear molar volumes of the active materials as function of lithium stoichiometry are taken from literature and implemented into the open-source software Cantera for convenient coupling to battery simulation codes. The model is parameterized and validated using electrical, thermal and thickness measurements over a wide range of C-rates from 0.05 C to 10 C. The combined experimental and simulated analyses show that thickness change during cycling is dominated by intercalation-induced swelling of graphite, while swelling of the two blend components partially cancel each other. At C-rates above 2 C, electrochemistry-induced temperature increase significantly contributes to cell swelling due to thermal expansion. The thickness changes are nonlinearly distributed over the thickness of the electrode pair due to gradients in the local lithiation, which may accelerate local degradation. Remaining discrepancies between simulation and experiment at high C-rates might be attributed to lithium plating, which is not considered in the model at present.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3