Extraction Strategies from Black Alloy Leachate: A Comparative Study of Solvent Extractants

Author:

Koo Namho1,Kim Byungseon1,Kim Hong-In2,Kwon Kyungjung1ORCID

Affiliation:

1. Department of Energy & Mineral Resources Engineering, Sejong University, Seoul 05006, Republic of Korea

2. Resources Recycling Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea

Abstract

Recycling spent lithium-ion batteries (LIBs) is crucial to prevent environmental pollution and recover valuable metals. Traditional methods for recycling spent LIBs include hydrometallurgy and pyrometallurgy. Among these methods, solvent extraction can selectively extract valuable metals in spent LIB leachate. Meanwhile, spent LIBs that underwent pyrometallurgical treatment generate a so-called ‘black alloy’ of Ni, Co, Cu, and so on. These elements in the black alloy need to be separated by solvent extraction and there have been few studies on extracting valuable metals from black alloy. Therefore, it is necessary to examine the extraction behavior of elements in black alloy and optimize the solvent extraction process to recover valuable metals. In this paper, four types of organic extractants are used to extract metals from simulated black alloy leachate: di-(2ethylhexyl) phosphoric acid (D2EHPA), bis-(2,4,4-trimethylpentyl) phosphinic acid (Cyanex272), 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC88A), and neodecanoic acid (Versatic acid 10). Based on the pH isotherms, D2EHPA would be the most reasonable for Mn extraction and impurity removal. Cyanex 272 would be more suitable for Co separation than PC88A, and Versatic acid 10 is preferred for Cu extraction over other metals. In conclusion, the optimal combination of extractants is suggested for the recovery of valuable metals.

Funder

Korea government (Ministry of Science and ICT

Ministry of Education

Ministry of Environment

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3