Modelling Binder Degradation in the Thermal Treatment of Spent Lithium-Ion Batteries by Coupling Discrete Element Method and Isoconversional Kinetics

Author:

Nobis Christian1,Mancini Marco1ORCID,Fischlschweiger Michael1

Affiliation:

1. Institute of Energy Process Engineering and Fuel Technology, Clausthal University of Technology, Agricolastraße 4, 38678 Clausthal-Zellerfeld, Germany

Abstract

Developing efficient recycling processes with high recycling quotas for the recovery of graphite and other critical raw materials contained in LIBs is essential and prudent. This action holds the potential to substantially diminish the supply risk of raw materials for LIBs and enhance the sustainability of their production. An essential processing step in LIB recycling involves the thermal treatment of black mass to degrade the binder. This step is crucial as it enhances the recycling efficiency in subsequent processes, such as flotation and leaching-based processing. Therefore, this paper introduces a Representative Black Mass Model (RBMM) and develops a computational framework for the simulation of the thermal degradation of polymer-based binders in black mass (BM). The models utilize the discrete element method (DEM) with a coarse-graining (CG) scheme and the isoconversional method to predict binder degradation and the required heat. Thermogravimetric analysis (TGA) of the binder polyvinylidene fluoride (PVDF) is utilized to determine the model parameters. The model simulates a specific thermal treatment case on a laboratory scale and investigates the relationship between the scale factor and heating rate. The findings reveal that, for a particular BM system, a scaling factor of 100 regarding the particle diameter is applicable within a heating rate range of 2 to 22 K/min.

Funder

German Federal Ministry of Education and Research

Publisher

MDPI AG

Reference48 articles.

1. Bürklin, B., Latz, T., Schenk, L., Degen, F., Diehl, M., Krätzig, O., Paulsen, T., Kampker, A., Lackner, N., and Neef, C. (2022). Umfeldbericht zum Europäischen Innovationssystem Batterie 2022, Fraunhofer ISI.

2. Grohol, M., and Veeh, C. (2023). Study on the Critical Raw Materials for the EU 2023: Final Report, Publications Office of the European Union.

3. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments;Mossali;J. Environ. Manag.,2020

4. Tailoring Lithium Aluminate Phases Based on Thermodynamics for an Increased Recycling Efficiency of Li-Ion Batteries;Li;ACS EST Eng.,2022

5. High-Temperature Phase Behavior of Li2O-MnO with a Focus on the Liquid-to-Solid Transition;Li;JOM,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3