Urban Land Use and Land Cover Classification Using Multisource Remote Sensing Images and Social Media Data

Author:

Shi ,Qi ,Liu ,Niu ,Zhang

Abstract

Land use and land cover (LULC) are diverse and complex in urban areas. Remotely sensed images are commonly used for land cover classification but hardly identifies urban land use and functional areas because of the semantic gap (i.e., different definitions of similar or identical buildings). Social media data, “marks” left by people using mobile phones, have great potential to overcome this semantic gap. Multisource remote sensing data are also expected to be useful in distinguishing different LULC types. This study examined the capability of combined multisource remote sensing images and social media data in urban LULC classification. Multisource remote sensing images included a Chinese ZiYuan-3 (ZY-3) high-resolution image, a Landsat 8 Operational Land Imager (OLI) multispectral image, and a Sentinel-1A synthetic aperture radar (SAR) image. Social media data consisted of the hourly spatial distribution of WeChat users, which is a ubiquitous messaging and payment platform in China. LULC was classified into 10 types, namely, vegetation, bare land, road, water, urban village, greenhouses, residential, commercial, industrial, and educational buildings. A method that integrates object-based image analysis, decision trees, and random forests was used for LULC classification. The overall accuracy and kappa value attained by the combination of multisource remote sensing images and WeChat data were 87.55% and 0.84, respectively. They further improved to 91.55% and 0.89, respectively, by integrating the textural and spatial features extracted from the ZY-3 image. The ZY-3 high-resolution image was essential for urban LULC classification because it is necessary for the accurate delineation of land parcels. The addition of Landsat 8 OLI, Sentinel-1A SAR, or WeChat data also made an irreplaceable contribution to the classification of different LULC types. The Landsat 8 OLI image helped distinguish between the urban village, residential buildings, commercial buildings, and roads, while the Sentinel-1A SAR data reduced the confusion between commercial buildings, greenhouses, and water. Rendering the spatial and temporal dynamics of population density, the WeChat data improved the classification accuracies of an urban village, greenhouses, and commercial buildings.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3