Deep Learning-Generated Nighttime Reflectance and Daytime Radiance of the Midwave Infrared Band of a Geostationary Satellite

Author:

Kim Yerin,Hong SungwookORCID

Abstract

Midwave infrared (MWIR) band of 3.75 μm is important in satellite remote sensing in many applications. This band observes daytime reflectance and nighttime radiance according to the Earth’s and the Sun’s effects. This study presents an algorithm to generate no-present nighttime reflectance and daytime radiance at MWIR band of satellite observation by adopting the conditional generative adversarial nets (CGAN) model. We used the daytime reflectance and nighttime radiance data in the MWIR band of the meteoritical imager (MI) onboard the Communication, Ocean and Meteorological Satellite (COMS), as well as in the longwave infrared (LWIR; 10.8 μm) band of the COMS/MI sensor, from 1 January to 31 December 2017. This model was trained in a size of 1024 × 1024 pixels in the digital number (DN) from 0 to 255 converted from reflectance and radiance with a dataset of 256 images, and validated with a dataset of 107 images. Our results show a high statistical accuracy (bias = 3.539, root-mean-square-error (RMSE) = 8.924, and correlation coefficient (CC) = 0.922 for daytime reflectance; bias = 0.006, RMSE = 5.842, and CC = 0.995 for nighttime radiance) between the COMS MWIR observation and artificial intelligence (AI)-generated MWIR outputs. Consequently, our findings from the real MWIR observations could be used for identification of fog/low cloud, fire/hot-spot, volcanic eruption/ash, snow and ice, low-level atmospheric vector winds, urban heat islands, and clouds.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference32 articles.

1. Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast

2. Evolution of Satellite Observation in the United States and Their Use in Meteorology;Purdom,1996

3. Supplement to An Introduction to Meteosat Second Generation (MSG)

4. Climate Change Vulnerability Mapping for Southeast Asia. Economy and Environment Program for Southeast Asia (EEPSEA), Singapore with CIDA, IDRC and SIDAhttps://www.idrc.ca/sites/default/files/sp/Documents%20EN/climate-change-vulnerability-mapping-sa.pdf

5. INTRODUCING THE NEXT-GENERATION ADVANCED BASELINE IMAGER ON GOES-R

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3