Design and Synchronization Procedures of a D&F Co-Operative 5G Network Based on SDR Hardware Interface: Performance Analysis

Author:

Verdecia-Peña RandyORCID,Alonso José I.ORCID

Abstract

Software defined radio (SDR) is a commonly used platform for its ease of operation and cost-effectiveness for the development and testing of real wireless communication systems. By supporting high transmission rates and enabling fast and cost-effective deployments, mainly in millimeter-wave (mmWave), the co-operative 5G network has been standardized by 3GPP Release 16. In this paper, a decode-and-forward (D&F) co-operative hardware network is proposed as one of the key technologies for future 5G/6G wireless networks. The proposed system consists of an emulated base station processing unit (gnodeB), a D&F protocol and the user equipment (UE). In particular, the design of the D&F relay node is based on an MIMO layer 2 relay technology. A testbed based on an SDR platform and MatlabTM software, in which the physical broadcast channel (PBCH) transmission, physical downlink control channel (PDCCH), physical downlink shared channel (PDSCH), and downlink shared channel (DL-SCH) for transport channel coding, according to the 3GPP standardized 5G downlink signal, has been designed. The key performance indicators (KPIs), namely EVM, BER, and throughput, were measured for 5G signals with 64-QAM and 256-QAM modulation schemes. The obtained results show that the D&F co-operative 5G network achieves substantially improved KPIs in the communication between the gnodeB and the UE in an outdoor-to-indoor scenario. Furthermore, it has been demonstrated that the D&F protocol presents a good performance and behavior being compared to one commercial equipment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3