Research on Runoff Simulations Using Deep-Learning Methods

Author:

Liu Yan,Zhang TingORCID,Kang Aiqing,Li Jianzhu,Lei Xiaohui

Abstract

Runoff simulations are of great significance to the planning management of water resources. Here, we discussed the influence of the model component, model parameters and model input on runoff modeling, taking Hanjiang River Basin as the research area. Convolution kernel and attention mechanism were introduced into an LSTM network, and a new data-driven model Conv-TALSTM was developed. The model parameters were analyzed based on the Conv-TALSTM, and the results suggested that the optimal parameters were greatly affected by the correlation between the input data and output data. We compared the performance of Conv-TALSTM and variant models (TALSTM, Conv-LSTM, LSTM), and found that Conv-TALSTM can reproduce high flow more accurately. Moreover, the results were comparable when the model was trained with meteorological or hydrological variables, whereas the peak values with hydrological data were closer to the observations. When the two datasets were combined, the performance of the model was better. Additionally, Conv-TALSTM was also compared with an ANN (artificial neural network) and Wetspa (a distributed model for Water and Energy Transfer between Soil, Plants and Atmosphere), which verified the advantages of Conv-TALSTM in peak simulations. This study provides a direction for improving the accuracy, simplifying model structure and shortening calculation time in runoff simulations.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3