Abstract
The capability of landing on previously unvisited areas is a fundamental challenge for an unmanned aerial vehicle (UAV). In this paper, we developed a vision-based motion estimation as an aid to improve landing performance. As an alternative to the common scenarios accompanying by external infrastructures or well-defined marker, the proposed hybrid framework can successfully land on a new area without any prior information about guiding marks. The implementation was based on the optical flow technique associated with a multi-scale strategy to overcome the decreasing field-of-view during the UAV descending. Compared with a commercial Global Positioning System (GPS) through a sequence of flight trials, the vision-aided scheme can effectively minimize the possible sensing error, thus, leading to a more accurate result. Moreover, this work has potential to integrate the fast-growing image learning process and yields more practical versatility for UAV applications in the future.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献