Towards Learning Discrete Representations via Self-Supervision for Wearables-Based Human Activity Recognition

Author:

Haresamudram Harish1,Essa Irfan2,Plötz Thomas2ORCID

Affiliation:

1. School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

2. School of Interactive Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

Human activity recognition (HAR) in wearable and ubiquitous computing typically involves translating sensor readings into feature representations, either derived through dedicated pre-processing procedures or integrated into end-to-end learning approaches. Independent of their origin, for the vast majority of contemporary HAR methods and applications, those feature representations are typically continuous in nature. That has not always been the case. In the early days of HAR, discretization approaches had been explored—primarily motivated by the desire to minimize computational requirements on HAR, but also with a view on applications beyond mere activity classification, such as, for example, activity discovery, fingerprinting, or large-scale search. Those traditional discretization approaches, however, suffer from substantial loss in precision and resolution in the resulting data representations with detrimental effects on downstream analysis tasks. Times have changed, and in this paper, we propose a return to discretized representations. We adopt and apply recent advancements in vector quantization (VQ) to wearables applications, which enables us to directly learn a mapping between short spans of sensor data and a codebook of vectors, where the index comprises the discrete representation, resulting in recognition performance that is at least on par with their contemporary, continuous counterparts—often surpassing them. Therefore, this work presents a proof of concept for demonstrating how effective discrete representations can be derived, enabling applications beyond mere activity classification but also opening up the field to advanced tools for the analysis of symbolic sequences, as they are known, for example, from domains such as natural language processing. Based on an extensive experimental evaluation of a suite of wearable-based benchmark HAR tasks, we demonstrate the potential of our learned discretization scheme and discuss how discretized sensor data analysis can lead to substantial changes in HAR.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3