Hyperparameter Optimization with Genetic Algorithms and XGBoost: A Step Forward in Smart Grid Fraud Detection

Author:

Mehdary Adil1ORCID,Chehri Abdellah2ORCID,Jakimi Abdeslam3,Saadane Rachid1ORCID

Affiliation:

1. LaGes, Hassania School of Public Works, Casablanca 20000, Morocco

2. Department of Mathematics and Computer Science, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada

3. GL-ISI Team, Faculty of Science and Technology Errachidia, Moulay Ismail University, Meknes 50050, Morocco

Abstract

This study provides a comprehensive analysis of the combination of Genetic Algorithms (GA) and XGBoost, a well-known machine-learning model. The primary emphasis lies in hyperparameter optimization for fraud detection in smart grid applications. The empirical findings demonstrate a noteworthy enhancement in the model’s performance metrics following optimization, particularly emphasizing a substantial increase in accuracy from 0.82 to 0.978. The precision, recall, and AUROC metrics demonstrate a clear improvement, indicating the effectiveness of optimizing the XGBoost model for fraud detection. The findings from our study significantly contribute to the expanding field of smart grid fraud detection. These results emphasize the potential uses of advanced metaheuristic algorithms to optimize complex machine-learning models. This work showcases significant progress in enhancing the accuracy and efficiency of fraud detection systems in smart grids.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3