A Bidirectional Grid-Friendly Charger Design for Electric Vehicle Operated under Pulse-Current Heating and Variable-Current Charging

Author:

Jin Ningzhi1ORCID,Wang Jianjun1ORCID,Li Yalun2,He Liangxi2,Wu Xiaogang3ORCID,Wang Hewu2ORCID,Lu Languang2

Affiliation:

1. School of Electrical & Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China

2. School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China

3. School of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China

Abstract

Low-temperature preheating, fast charging, and vehicle-to-grid (V2G) capabilities are important factors for the further development of electric vehicles (EVs). However, for conventional two-stage chargers, the EV charging/discharging instructions and grid instructions cannot be addressed simultaneously for specific requirements, pulse heating and variable-current charging can cause high-frequency power fluctuations at the grid side. Therefore, it is necessary to design a bidirectional grid-friendly charger for EVs operated under pulse-current heating and variable-current charging. The DC bus, which serves as the medium connecting the bidirectional DC–DC and bidirectional DC–AC, typically employs capacitors. This paper analyzes the reasons why the use of capacitors in the DC bus cannot satisfy the grid and EV requirements, and it proposes a new DC bus configuration that utilizes energy storage batteries instead of capacitors. Due to the voltage-source characteristics of the energy storage batteries, EV instructions and grid instructions can be flexibly and smoothly scheduled by using phase-shift control and adaptive virtual synchronous generator (VSG) control, respectively. In addition, the stability of the control strategy is demonstrated using small signal modeling. Finally, typical operating conditions (such as EV pulse preheating, fast charging with variable current, and grid peak shaving and valley filling) are selected for validation. The results show that in the proposed charger, the grid scheduling instructions and EV charging/discharging instructions do not interfere with each other, and different commands between EVs also do not interfere with each other under a charging pile with dual guns. Without affecting the requirements of EVs, the grid can change the proportion of energy supply based on actual scenarios and can also obtain energy from either EVs or energy storage batteries. For the novel charger, the pulse modulation time for EVs consistently achieves a steady state within 0.1 s; thus, the pulse modulation speed is as much as two times faster than that of conventional chargers with identical parameters.

Funder

National Natural Science Foundation of China

China National Postdoctoral Program for Innovative Talents

Open Fund Project of State Key Laboratory of Automotive Safety and Energy

Tsinghua–Toyota Joint Research Fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3