Effects of Stand Density on Growth, Soil Water Content and Nutrients in Black Locust Plantations in the Semiarid Loess Hilly Region

Author:

Zhai Bochao12,Sun Meimei34,Shen Xiaojuan25,Zhu Yan26,Li Guoqing13ORCID,Du Sheng13ORCID

Affiliation:

1. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China

2. College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China

3. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China

4. College of Software, Henan University, Kaifeng 475004, Henan, China

5. Chongqing Forestry Investment Development Co., Ltd., Chongqing 401120, China

6. Gansu Monitoring Center for Ecological Resources, Lanzhou 730000, Gansu, China

Abstract

Stand density is an important index of forest structure, which strongly affects local environments and functions in the forest. Many black locust (Robinia pseudoacacia) plantations with low quality in the Loess hilly region are assumed to be caused by inappropriate stand density. In this study, the growth status, spatio-temporal variations in soil water and nutrient conditions were investigated in the nearly middle-aged plantations with three density classes. The proportion of stunted trees increased with the increase in density class. The stands of <2500 stems ha−1 not only had the distribution peak of diameter at breast height (DBH) being at a larger diameter class, but also showed relatively rapid growths in diameter and biomass per tree. However, stand density did not show a significant effect on the growth rate of both mean tree height and biomass density. The maximum biomass density and relatively high soil NH4+-N content appeared in the density class of 2500–3500 stems ha−1. The temporal stability of soil water content (SWC) on a seasonal scale increased with the deepening of the soil layer, and spatio-temporal variations in the SWC remained relatively stable in the deep layer (200–300 cm). While the infiltration depth after rainfall was rainfall-amount-dependent, the depth of effective replenishment reduced with the density class increasing. The average SWC and its temporal stability in 0–300 cm of soil layer are the best in a stand density of less than 2500 stems ha−1. No significant differences were observed among the stand density classes in the contents of total nitrogen, total phosphorus, NO3−-N, and available phosphorus in soils of these nearly middle-aged plantations that have experienced similar management history since the afforestation of abandoned cropland. Overall, the stand condition of density class I is superior at present. But thinning of stand density may be needed to maintain the best stand conditions in the future, with the stand age increasing. The results contribute to further understanding of the relations between density gradient and multiple variables in the plantations, which offer a reference for the forest management and sustainable development of ecosystems in the semiarid region of the Loess Plateau.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3