Fabrication of Microgel-Modified Hydrogel Flexible Strain Sensors Using Electrohydrodynamic Direct Printing Method

Author:

Feng Junyan1,Cao Peng2,Yang Tao2,Ao Hezheng2,Xing Bo3

Affiliation:

1. College of Mechanical and Electronic Engineering, Jiaxing Nanhu University, Jiaxing 314001, China

2. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

3. College of Information Science and Engineering, Jiaxing University, Jiaxing 314000, China

Abstract

Hydrogel flexible strain sensors, renowned for their high stretchability, flexibility, and wearable comfort, have been employed in various applications in the field of human motion monitoring. However, the predominant method for fabricating hydrogels is the template method, which is particularly inefficient and costly for hydrogels with complex structural requirements, thereby limiting the development of flexible hydrogel electronic devices. Herein, we propose a novel method that involves using microgels to modify a hydrogel solution, printing the hydrogel ink using an electrohydrodynamic printing device, and subsequently forming the hydrogel under UV illumination. The resulting hydrogel exhibited a high tensile ratio (639.73%), high tensile strength (0.4243 MPa), and an ionic conductivity of 0.2256 S/m, along with excellent electrochemical properties. Moreover, its high linearity and sensitivity enabled the monitoring of a wide range of subtle changes in human movement. This novel approach offers a promising pathway for the development of high-performance, complexly structured hydrogel flexible sensors.

Funder

Science and Technology Project of Jiaxing

General scientific research project of Zhejiang Education Department

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3