Multiomics Revealed the Multi-Dimensional Effects of Late Sleep on Gut Microbiota and Metabolites in Children in Northwest China

Author:

Xiang Xuesong1,Chen Juanjuan2ORCID,Zhu Mingyu1,Gao Huiyu1,Liu Xiaobing1,Wang Qi2ORCID

Affiliation:

1. Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China

2. Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730030, China

Abstract

Background Sleep plays a pivotal role in children’s mental and physical development and has been linked to the gut microbiota in animals and adults. However, the characteristics of the gut microbiota and metabolites and the relationship to late bedtimes in children remain unclear. Methods In total, 88 eligible children, aged from 3 to 8 years, were recruited and divided into two groups according to the bedtime collected by designed questionnaires (early, before 22:00: n = 48; late, after 22:00, n = 40). Stools and plasma samples were collected to examine the characteristics of the gut microbiota and metabolites by shotgun metagenomics and metabolomics. Results The richness and diversity of the gut microbiota in children with early bedtime were significantly increased compared with the late ones. Coprococcus, Collinsella, Akkermansia muciniphila, and Bifidobacterium adolescentis were significantly more abundant in children with early bedtime, while Bacteroides and Clostridium sp. CAG-253 were obviously enriched in the late ones. A total of 106 metabolic pathways, including biosynthesis of ribonucleotide, peptidoglycan, and amino acids, and starch degradation were enriched in children with early bedtime, while 42 pathways were abundant in those with late bedtime. Notably, more gut microbial metabolites were observed in children with late bedtime, which included aldehyde, ketones, esters, amino acids and their metabolites, benzene and substituted derivatives, bile acids, heterocyclic compounds, nucleotide and metabolites, organic acid and derivatives, sugars and acyl carnitine. In plasma, fatty amides, lipids, amino acids, metabolites, hormones, and related compounds were enriched in children with early bedtime, while bile acids were higher in children with late bedtime. Association studies revealed that the different microbial species were correlated with metabolites from gut microbiota and plasma. Conclusions The results of our study revealed that the gut microbiota diversity and richness, and metabolic pathways were significantly extensive in children with early bedtime, whereas the gut microbial metabolites were significantly decreased, which might be related to gut microbial differences.

Funder

Cuiying Scientific and Technological Innovation Program

Lanzhou University Second Hospital

Health Food Evaluation Center of State Food and Drug Administration

Chinese Association for Student Nutrition & Health Promotion-Mead Johnson Nutritionals (China) Joint Fund

Lanzhou Science and Technology Planning Project Medical Properties

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3