Clostridium butyricum Strain CCFM1299 Reduces Obesity via Increasing Energy Expenditure and Modulating Host Bile Acid Metabolism

Author:

Liao Jingyi12,Liu Yaoliang12,Yao Ye12,Zhang Jie12,Wang Hongchao12ORCID,Zhao Jianxin123,Chen Wei123,Lu Wenwei1234

Affiliation:

1. State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China

2. School of Food Science and Technology, Jiangnan University, Wuxi 214122, China

3. National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China

4. (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China

Abstract

Clostridium butyricum is a butyrate-producing microorganism which has beneficial effects on various diseases, including obesity. In our previous study, the anti-obesity Clostridium butyricum strain CCFM1299 (C20_1_1) was selected, but its anti-obesity mechanism was not clarified. Herein, CCFM1299 was orally administrated to high-fat-diet-treated C57BL/6J mice for 12 weeks to uncover the way the strain alleviates obesity. The results indicated that CCFM1299 alleviated obesity through increasing the energy expenditure and increasing the expression of genes related to thermogenesis in brown adipose tissue (BAT). Moreover, strain CCFM1299 could also affect the expression of immune-related genes in epididymal white adipose tissue (eWAT). This immunomodulatory effect might be achieved through its influence on the complement system, as the expression of the complement factor D (CFD) gene decreased significantly. From the view of metabolites, CCFM1299 administration increased the levels of ursodeoxycholic acid (UDCA) in feces and taurohyodeoxycholic acid (THDCA) in serum. Together, the anti-obesity potential of CCFM1299 might be attributed to the increase in energy consumption, the regulation of immune-related gene expression in eWAT, and the alteration of bile acid metabolism in the host. These provided new insights into the potential application of anti-obesity microbial preparations and postbiotics.

Funder

National Natural Science Foundation of China

111 project

collaborative innovation center of food safety and quality control in Jiangsu Province

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3