Abstract
The determination if fish movement of potadromous species is impeded in a river system is often difficult, particularly when timing and extent of movements are unknown. Furthermore, evaluating river connectivity poses additional challenges. Here, we used large-scale, long-term fish movement to study and identify anthropogenic barriers to movements in the Lake Winnipeg basin including the Red, Winnipeg, and Assiniboine rivers. In the frame of the project, 80 Bigmouth Buffalo (Ictiobus cyprinellus) and 161 Channel Catfish (Ictalurus punctatus) were tagged with acoustic transmitters. Individual fish were detected with an acoustic telemetry network. Movements were subsequently analyzed using a continuous-time Markov model (CTMM). The study demonstrated large home ranges in the Lake Winnipeg basin and evidence of frequent transborder movements between Canada and the United States. The study also highlighted successful downstream fish passage at some barriers, whereas some barriers limited or completely blocked upstream movement. This biological knowledge on fish movements in the Lake Winnipeg basin highlights the need for fish passage solutions at different obstructions.
Funder
International Joint Commission
University of Nebraska
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献