Abstract
In recent decades, building maintenance has been recognized as an important issue as the number of deteriorating buildings increases around the world. In densely populated cities, building maintenance is essential for ensuring sustainable living and safety for residents. Improper maintenance can not only cause enormous maintenance costs, but also negatively affect residents and their environment. As a first step, the service life of building components needs to be estimated in advance. Mechanical, electrical, and plumbing (MEP) components especially produce many maintenance-related problems compared to other components. In this research, a model was developed that applies the genetic algorithm (GA) and case-based reasoning (CBR) methodologies to estimating the service life of MEP components. The applicability of the model was tested by comparing the outputs of 20 randomly selected test cases with those of retrieved similar cases. The experimental results demonstrated that the overall similarity scores of the retrieved cases were over 90%, and the mean absolute error rate (MAER) of 10-NN was approximately 7.48%. This research contributes to the literature for maintenance management by not only presenting an approach to estimating the service life of building components, but also by helping convert the existing maintenance paradigm from reactive to proactive measures.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献