Embedded Discrete Fracture Modeling as a Method to Upscale Permeability for Fractured Reservoirs

Author:

Dong Zhenzhen,Li Weirong,Lei GangORCID,Wang Huijie,Wang Cai

Abstract

Fractured reservoirs are distributed widely over the world, and describing fluid flow in fractures is an important and challenging topic in research. Discrete fracture modeling (DFM) and equivalent continuum modeling are two principal methods used to model fluid flow through fractured rocks. In this paper, a novel method, embedded discrete fracture modeling (EDFM), is developed to compute equivalent permeability in fractured reservoirs. This paper begins with an introduction on EDFM. Then, the paper describes an upscaling procedure to calculate equivalent permeability. Following this, the paper carries out a series of simulations to compare the computation cost between DFM and EDFM. In addition, the method is verified by embedded discrete fracture modeling and fine grid methods, and grid-block and multiphase flow are studied to prove the feasibility of the method. Finally, the upscaling procedure is applied to a three-dimensional case in order to study performance for a gas injection problem. This study is the first to use embedded discrete fracture modeling to compute equivalent permeability for fractured reservoirs. This paper also provides a detailed comparison and discussion on embedded discrete fracture modeling and discrete fracture modeling in the context of equivalent permeability computation with a single-phase model. Most importantly, this study addresses whether this novel method can be used in multiphase flow in a reservoir with fractures.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3