Short-Term Electric Load and Price Forecasting Using Enhanced Extreme Learning Machine Optimization in Smart Grids

Author:

Naz Aqdas,Javed Muhammad,Javaid Nadeem,Saba Tanzila,Alhussein Musaed,Aurangzeb KhursheedORCID

Abstract

A Smart Grid (SG) is a modernized grid to provide efficient, reliable and economic energy to the consumers. Energy is the most important resource in the world. An efficient energy distribution is required as smart devices are increasing dramatically. The forecasting of electricity consumption is supposed to be a major constituent to enhance the performance of SG. Various learning algorithms have been proposed to solve the forecasting problem. The sole purpose of this work is to predict the price and load efficiently. The first technique is Enhanced Logistic Regression (ELR) and the second technique is Enhanced Recurrent Extreme Learning Machine (ERELM). ELR is an enhanced form of Logistic Regression (LR), whereas, ERELM optimizes weights and biases using a Grey Wolf Optimizer (GWO). Classification and Regression Tree (CART), Relief-F and Recursive Feature Elimination (RFE) are used for feature selection and extraction. On the basis of selected features, classification is performed using ELR. Cross validation is done for ERELM using Monte Carlo and K-Fold methods. The simulations are performed on two different datasets. The first dataset, i.e., UMass Electric Dataset is multi-variate while the second dataset, i.e., UCI Dataset is uni-variate. The first proposed model performed better with UMass Electric Dataset than UCI Dataset and the accuracy of second model is better with UCI than UMass. The prediction accuracy is analyzed on the basis of four different performance metrics: Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), Mean Square Error (MSE) and Root Mean Square Error (RMSE). The proposed techniques are then compared with four benchmark schemes. The comparison is done to verify the adaptivity of the proposed techniques. The simulation results show that the proposed techniques outperformed benchmark schemes. The proposed techniques efficiently increased the prediction accuracy of load and price. However, the computational time is increased in both scenarios. ELR achieved almost 5% better results than Convolutional Neural Network (CNN) and almost 3% than LR. While, ERELM achieved almost 6% better results than ELM and almost 5% than RELM. However, the computational time is almost 20% increased with ELR and 50% with ERELM. Scalability is also addressed for the proposed techniques using half-yearly and yearly datasets. Simulation results show that ELR gives 5% better results while, ERELM gives 6% better results when used for yearly dataset.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3