A Comprehensive Methodology for the Integrated Optimal Sizing and Operation of Cogeneration Systems with Thermal Energy Storage

Author:

Urbanucci Luca,D’Ettorre Francesco,Testi DanieleORCID

Abstract

Cogeneration systems are widely acknowledged as a viable solution to reduce energy consumption and costs, and CO2 emissions. Nonetheless, their performance is highly dependent on their capacity and operational strategy, and optimization methods are required to fully exploit their potential. Among the available technical possibilities to maximize their performance, the integration of thermal energy storage is recognized as one of the most effective solutions. The introduction of a storage device further complicates the identification of the optimal equipment capacity and operation. This work presents a cutting-edge methodology for the optimal design and operation of cogeneration systems with thermal energy storage. A two-level algorithm is proposed to reap the benefits of the mixed integer linear programming formulation for the optimal operation problem, while overcoming its main drawbacks by means of a genetic algorithm at the design level. Part-load effects on nominal efficiency, variation of the unitary cost of the components in relation to their size, and the effect of the storage volume on its thermal losses are considered. Moreover, a novel formulation of the optimization problem is proposed to better characterize the heat losses and operation of the thermal energy storage. A rolling-horizon technique is implemented to reduce the computational time required for the optimization, without affecting the quality of the results. Furthermore, the proposed methodology is adopted to design a cogeneration system for a secondary school in San Francisco, California, which is optimized in terms of the equivalent annual cost. The results show that the optimally sized cogeneration unit directly meets around 70% of both the electric and thermal demands, while the thermal energy storage additionally covers 16% of the heat demands.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3