Detection of Human Plasma Glucose Using a Self-Powered Glucose Biosensor

Author:

Slaughter Gymama,Kulkarni Tanmay

Abstract

This work presents the characterization of a self-powered glucose biosensor using individual sequential assays of human plasma glucose obtained from diabetic patients. The self-powered glucose biosensor is exploited to optimize the assay parameters for sensing plasma glucose levels. In particular, the biofuel cell component of the system at pH 7.4, 37 °C generates a power density directly proportional to plasma glucose and exhibited a maximum power density of 0.462 mW·cm−2 at a cell voltage of 0.213 V in 5 mM plasma glucose. Plasma glucose is further sensed by monitoring the charge/discharge frequency (Hz) of the integrated capacitor functioning as the transducer. With this method, the plasma glucose is quantitatively detected in 100 microliters of human plasma with unprecedented sensitivity, as high as 104.51 ± 0.7 Hz·mM−1·cm−2 and a detection limit of 2.31 ± 0.3 mM. The results suggest the possibility to sense human plasma glucose at clinically relevant concentrations without the use of an external power source.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference34 articles.

1. IDF Diabetes Atlashttps://www.idf.org/e-library/epidemiology-research/diabetes-atlas/19-atlas-6th-edition.html

2. Advances and prospects in glucose assay technology

3. Use of a Subcutaneous Glucose Sensor To Detect Decreases in Glucose Concentration Prior to Observation in Blood

4. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38;Br. Med. J.,1998

5. Management of Hyperglycemia in Type 2 Diabetes: A Patient-Centered Approach

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3